

US010449657B2

(12) United States Patent LeCompte

(10) Patent No.: US 10,449,657 B2

(45) **Date of Patent:** Oct. 22, 2019

(54) TANK ASSEMBLY AND METHOD OF USE

(71) Applicant: MMLJ, Inc., Houston, TX (US)

(72) Inventor: **Benjamin LeCompte**, Houston, TX

(US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 202 days.

(21) Appl. No.: 15/712,453

(22) Filed: Sep. 22, 2017

(65) Prior Publication Data

US 2018/0079054 A1 Mar. 22, 2018

Related U.S. Application Data

- (63) Continuation-in-part of application No. 14/773,694, filed as application No. PCT/US2014/022170 on Mar. 7, 2014.
- (60) Provisional application No. 61/773,816, filed on Mar. 7, 2013, provisional application No. 62/398,225, filed on Sep. 22, 2016.
- (51) Int. Cl.

 B24C 7/00 (2006.01)

 B24C 9/00 (2006.01)

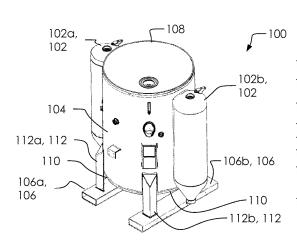
 F17C 13/04 (2006.01)
- (58) Field of Classification Search

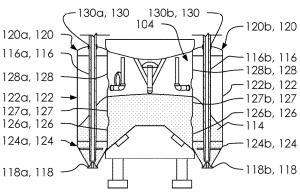
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

794,507 A *	7/1905	King B24C 7/0046
		451/91
819,922 A *	5/1906	Radell B24C 1/02
		451/79
925,591 A *	6/1909	Pangborn B24C 7/0046
		406/133
979.897 A *	12/1910	Steedman B24C 7/0046
, , , , , , , , , , , , , , , , , , , ,		451/102
2 815 716 A *	12/1957	Ransohoff B24C 7/0007
2,015,710 71	12/1957	415/116
2 741 729 A *	6/1073	Dowgin B24C 7/0046
3,741,730 A	0/1973	
2 = 2 + 2 = 2 + 2 + 2	0/4054	451/99
3,791,078 A *	2/19/74	Fleisher B24C 3/02
		451/101

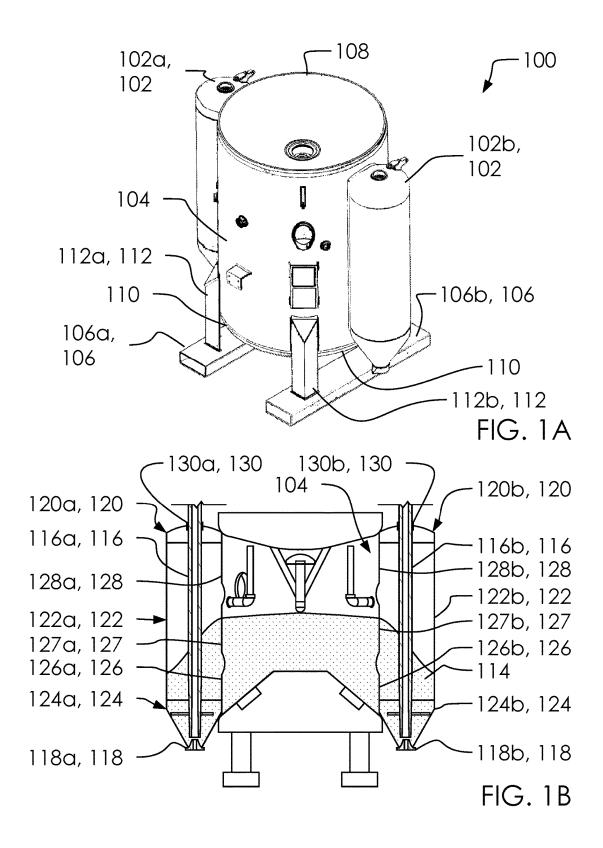

(Continued)


Primary Examiner — George B Nguyen (74) Attorney, Agent, or Firm — Shannon L Warren

(57) ABSTRACT

A tank assembly. Said tank assembly comprises a one or more blister assemblies, a shell assembly, a one or more air inlet hoses, a one or more spray equipment and a slurry mixture. Said one or more blister assemblies comprises a first blister assembly and a second blister assembly. Said one or more blister assemblies comprise a one or more draw tubes, a one or more cone flanges, a one or more head assemblies, a one or more shells, a one or more cone assemblies, an air line assembly, a one or more snorkel assemblies, and a separation distance. Said one or more draw tubes comprise a first draw tube and a second draw tube. Said separation distance between said one or more draw tubes is configured to allow said one or more spray equipment to rotate freely on said one or more draw tubes without interfering with one another.

5 Claims, 46 Drawing Sheets


US 10,449,657 B2 Page 2

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,994,097	A *	11/1976	Lamb B24C 5/02
			451/40
5,097,633	A *	3/1992	Branton B24C 7/0053
			451/101
5,393,228	A *	2/1995	Policicchio
5 422 652	A zite	7/1995	433/88 E-i D24G 1/002
5,433,653	A *	//1993	Friess B24C 1/003 451/100
8 342 012	B2*	1/2013	Funatsu B24C 1/00
0,342,912	DZ	1/2013	451/100
2008/0287039	A1*	11/2008	Connelly B24C 3/06
			451/38
2009/0075569	A1*	3/2009	Mase B24C 3/02
			451/99
2010/0210191	A1*	8/2010	Nguyen B24C 7/0046
			451/91
2013/0072094	A1*	3/2013	Eliason B24C 7/0007
2015/0102515		=10046	451/75
2016/0193715	A1*	7/2016	Nash B24C 7/00
			451/99

^{*} cited by examiner

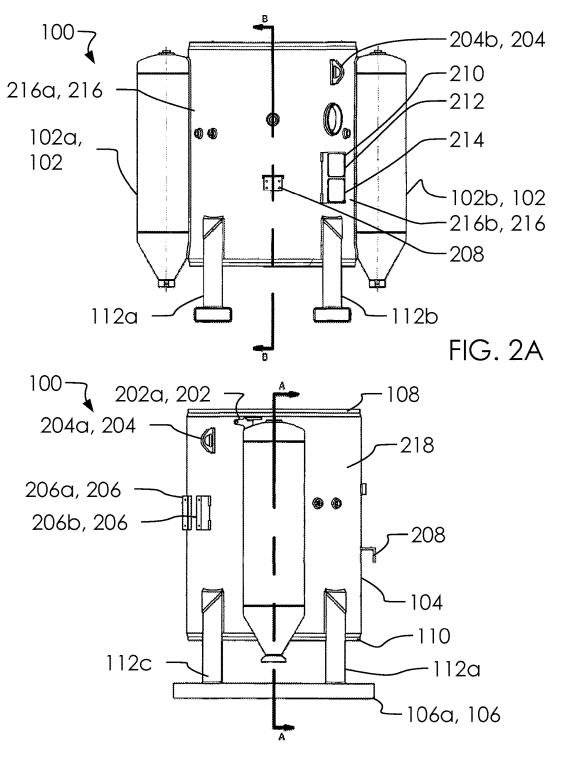


FIG. 2B

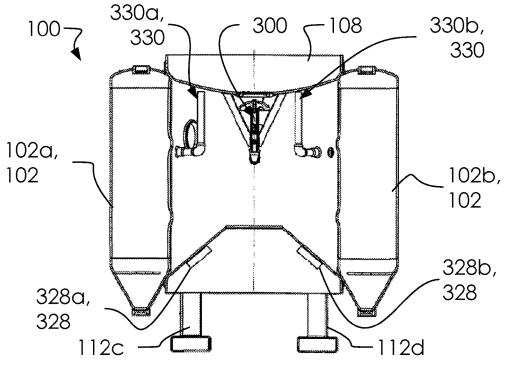


FIG. 3A

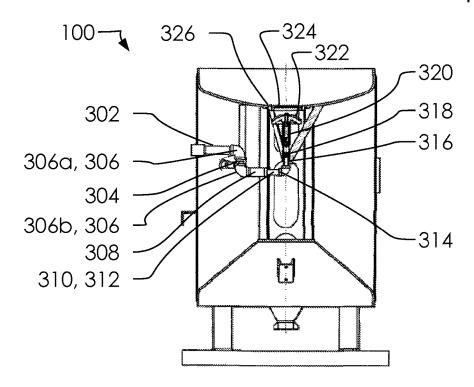
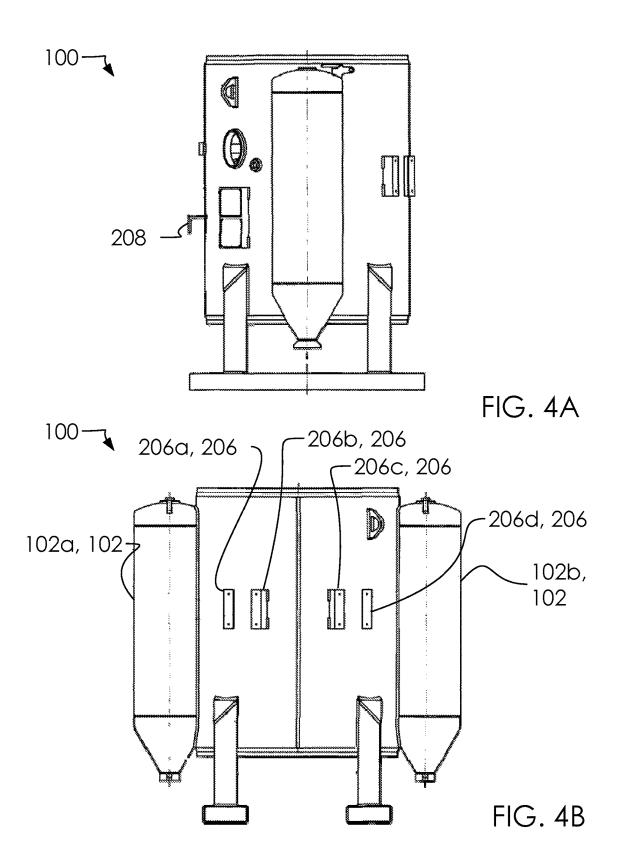



FIG. 3B

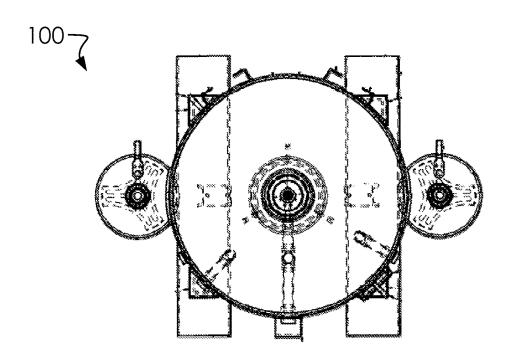


FIG. 5A

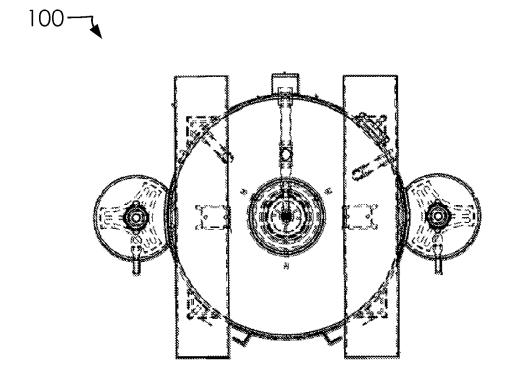
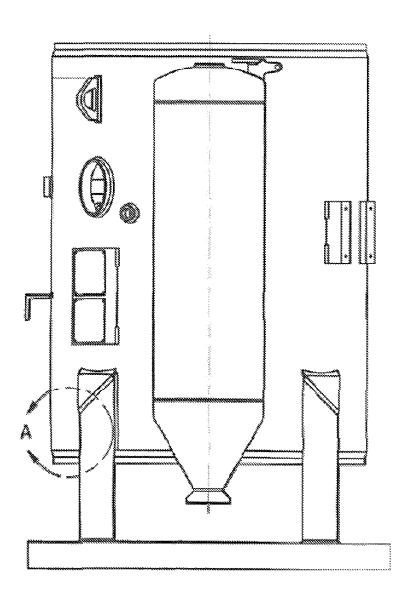



FIG. 5B

1007

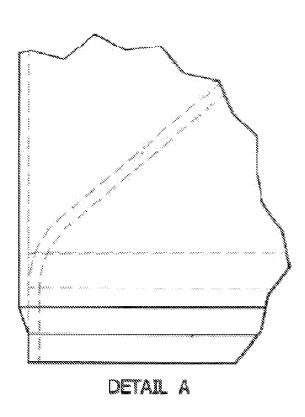
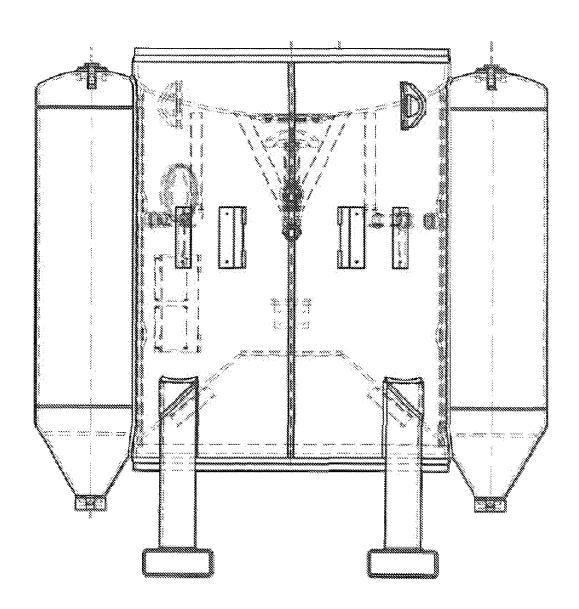



FIG. 7

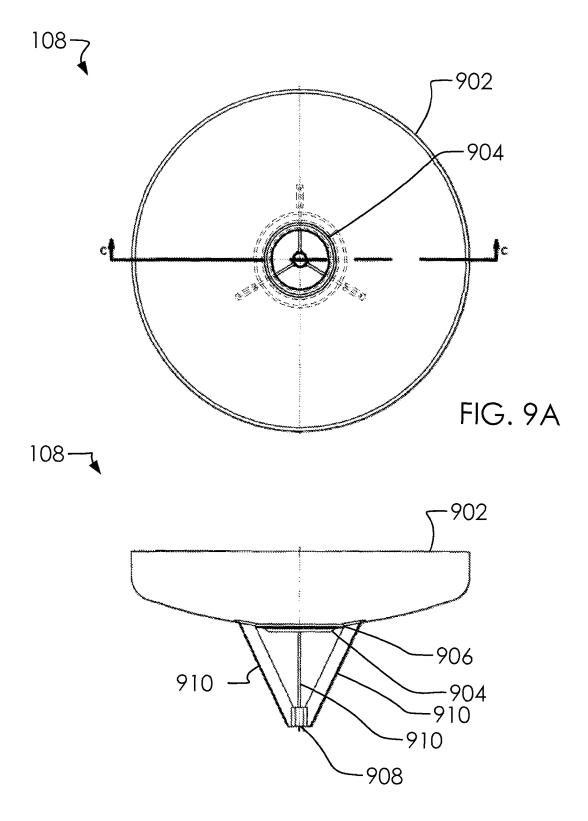


FIG. 9B

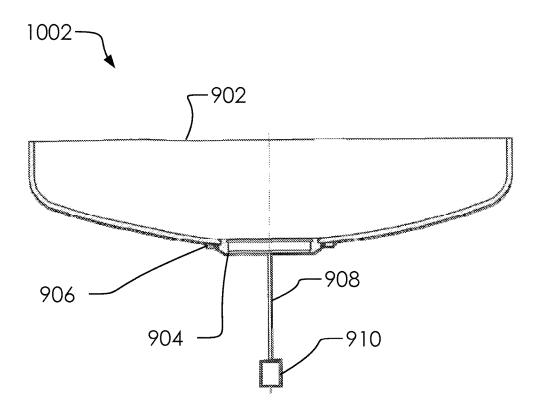


FIG. 10

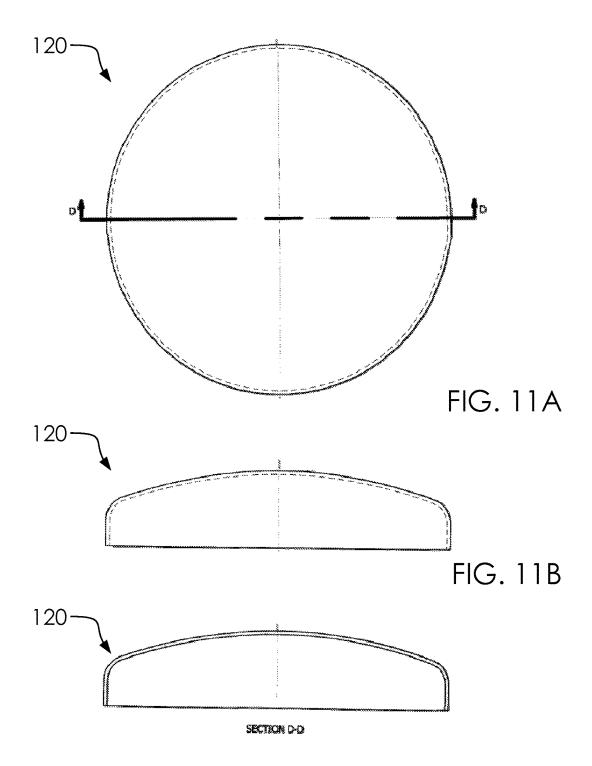


FIG. 11C

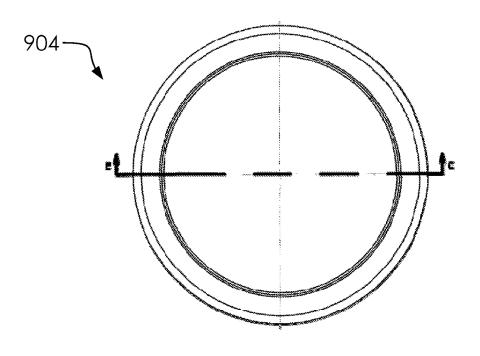


FIG. 12A

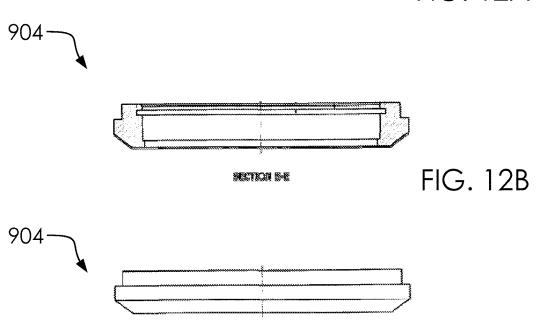
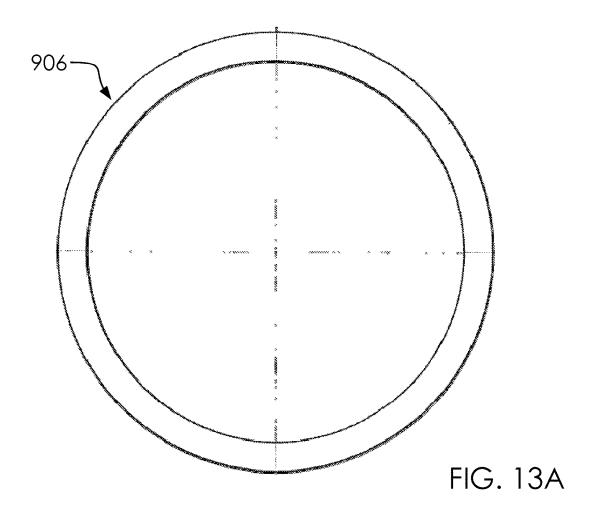
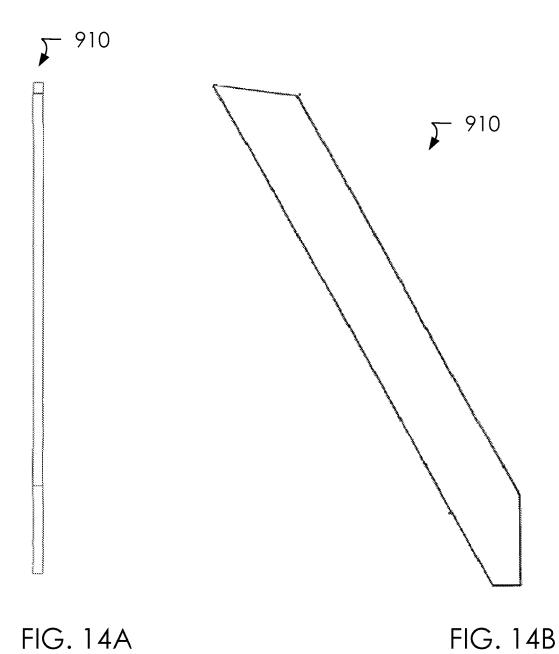
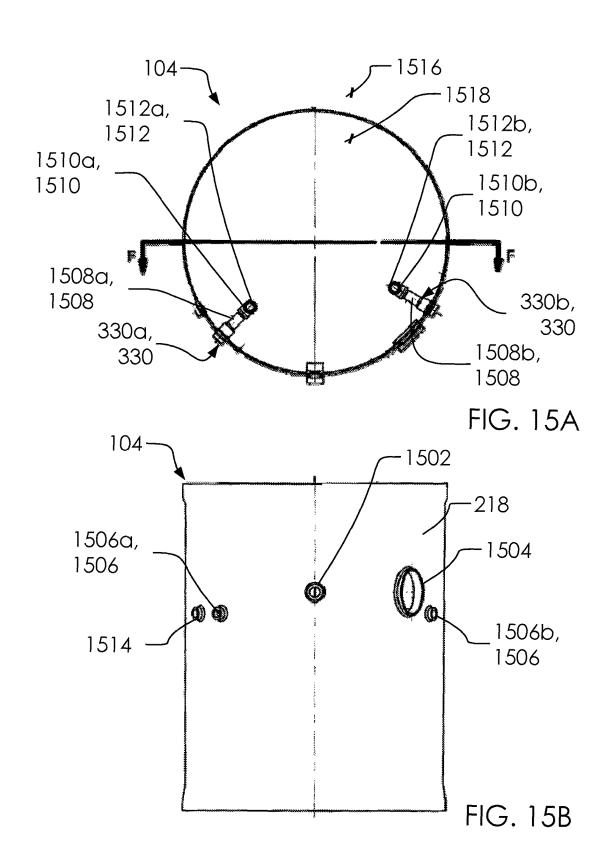
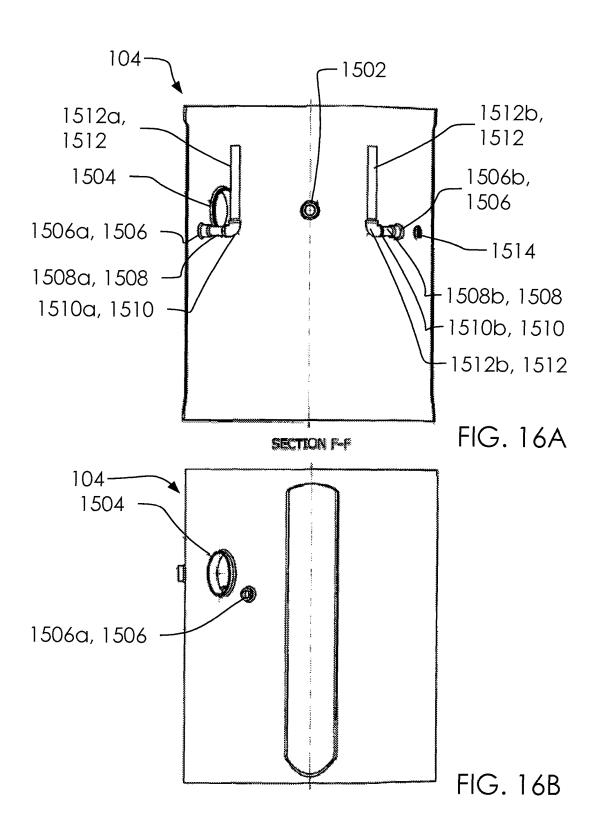


FIG. 12C

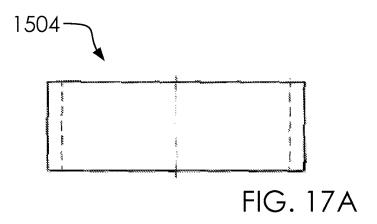


FIG. 13B

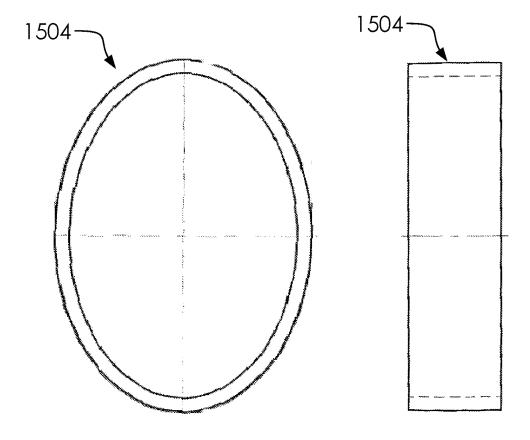


FIG. 17B FIG. 17C

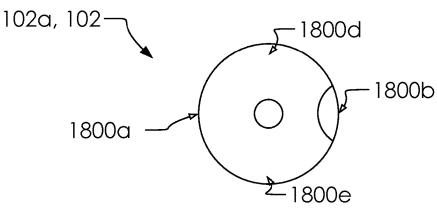


FIG. 18A

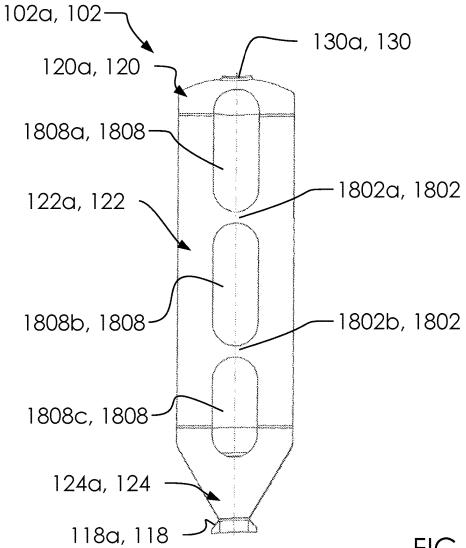
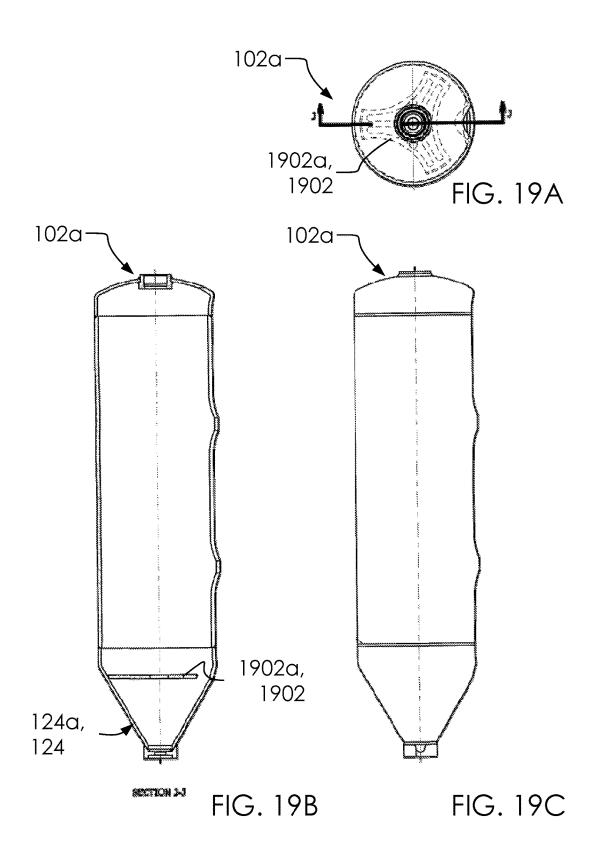
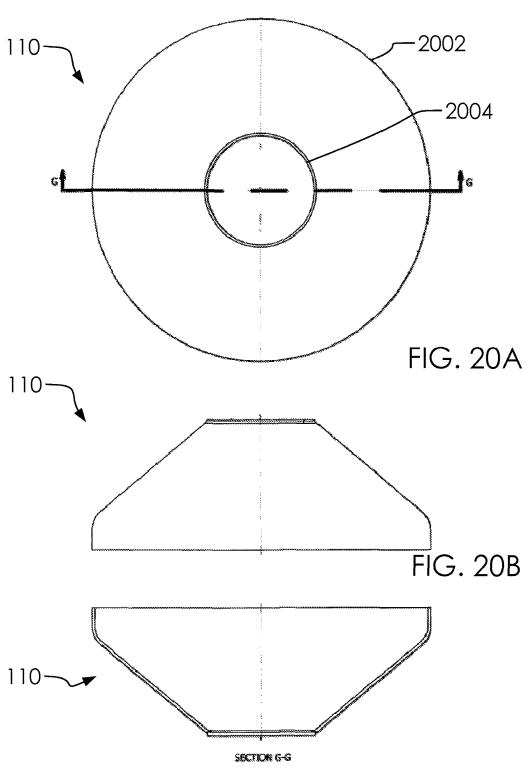
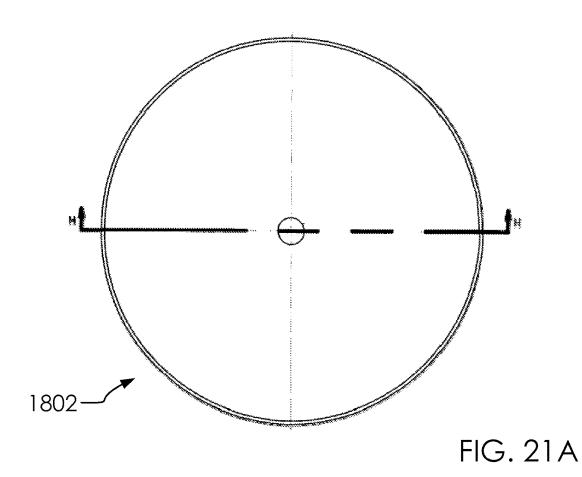
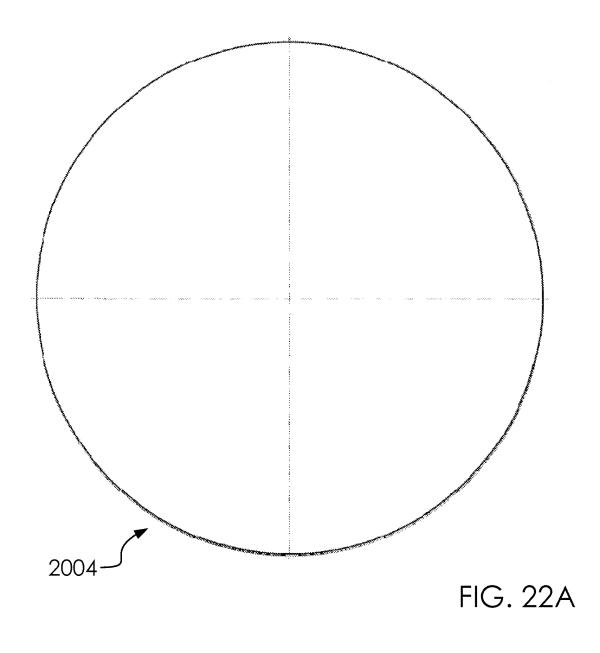
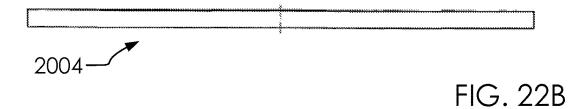



FIG. 18B


FIG. 20C

1802 SECTION H-H

FIG. 21B

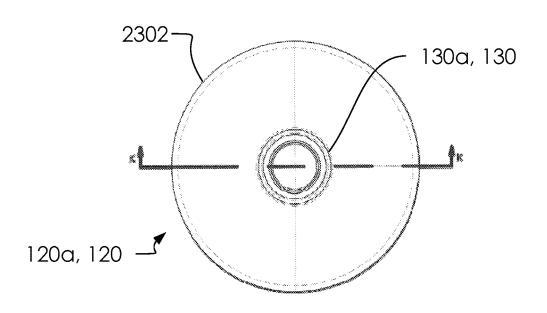


FIG. 23A

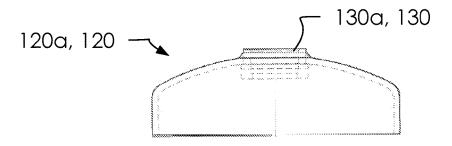
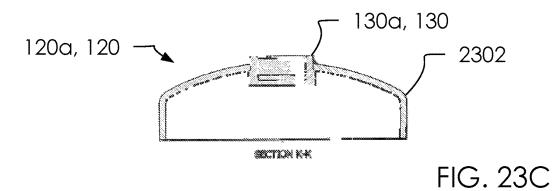



FIG. 23B

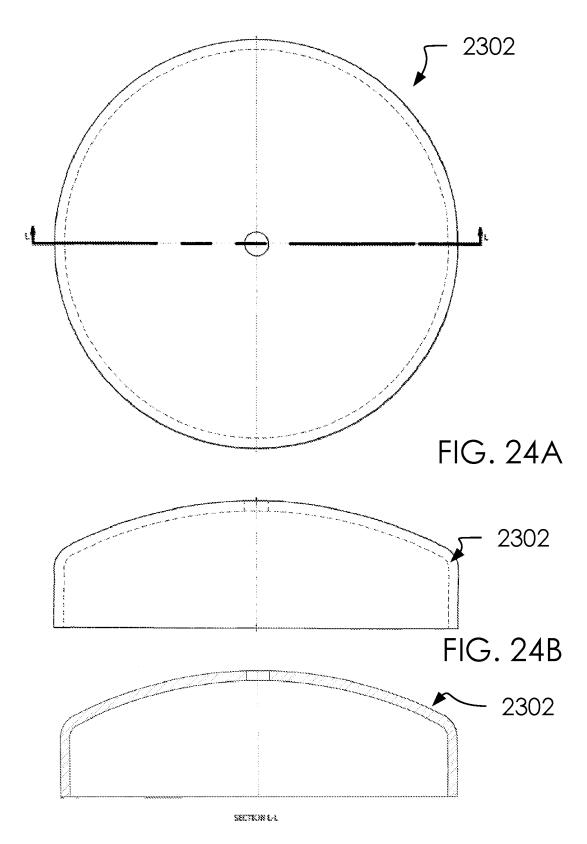
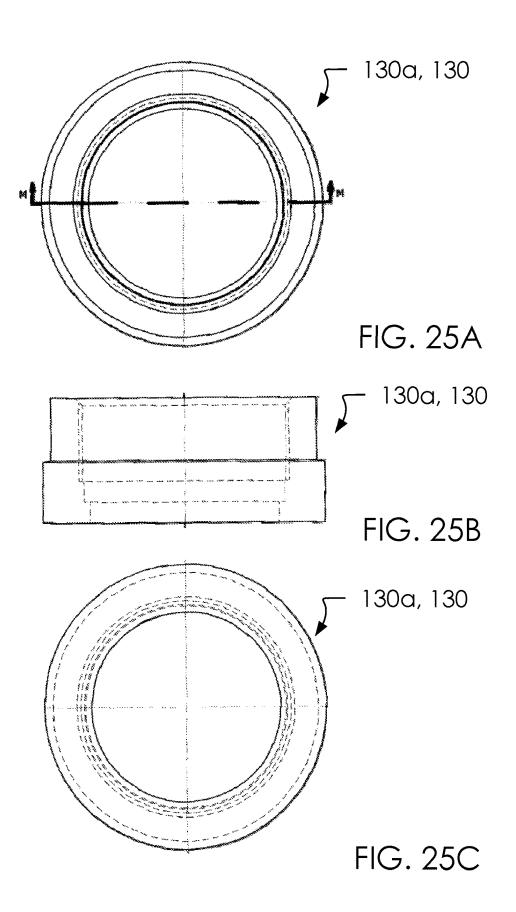
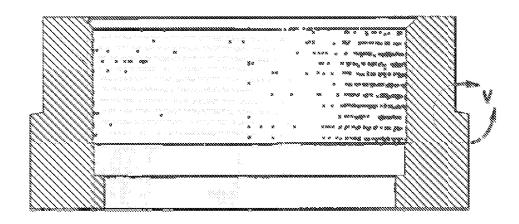




FIG. 24C

SECTION M-M

FIG. 26A

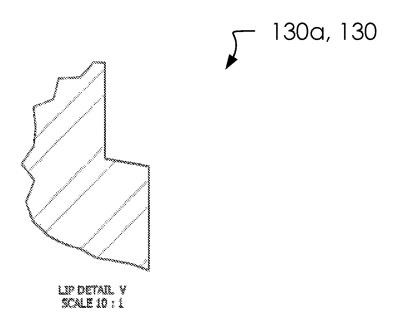
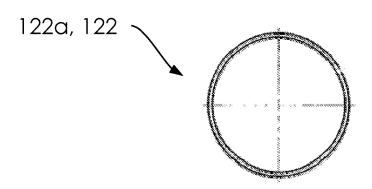



FIG. 26B

Oct. 22, 2019

FIG. 27A

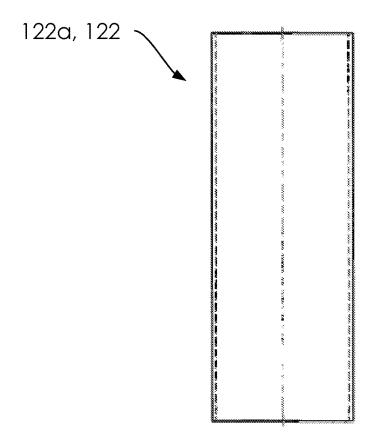


FIG. 27B

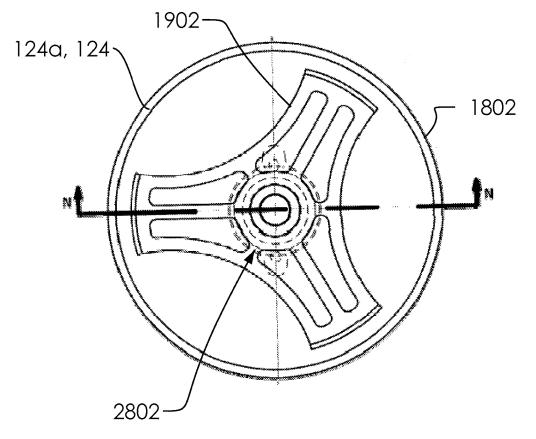


FIG. 28

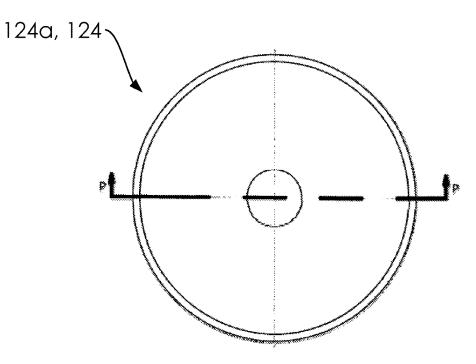


FIG. 29A

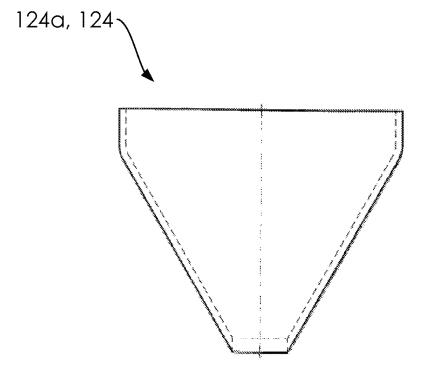


FIG. 29B

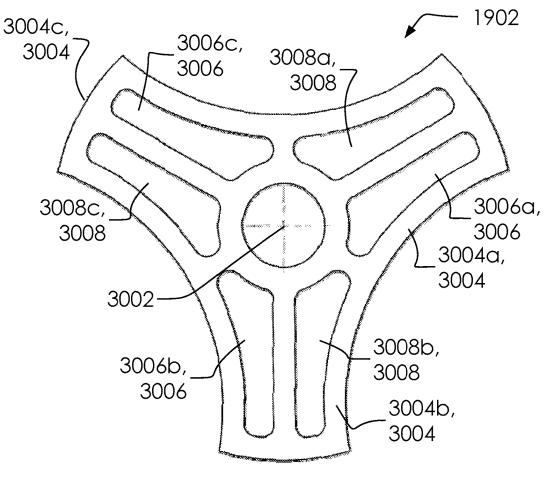


FIG. 30A

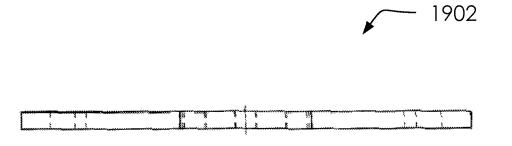


FIG. 30B

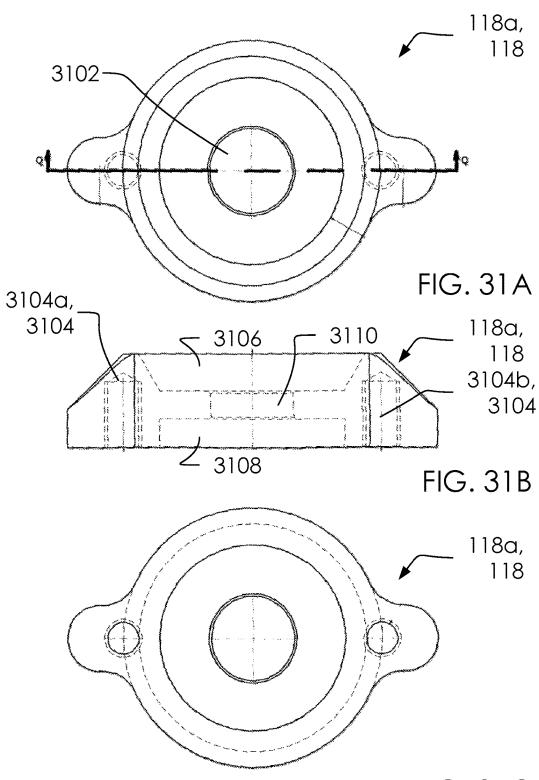


FIG. 31C

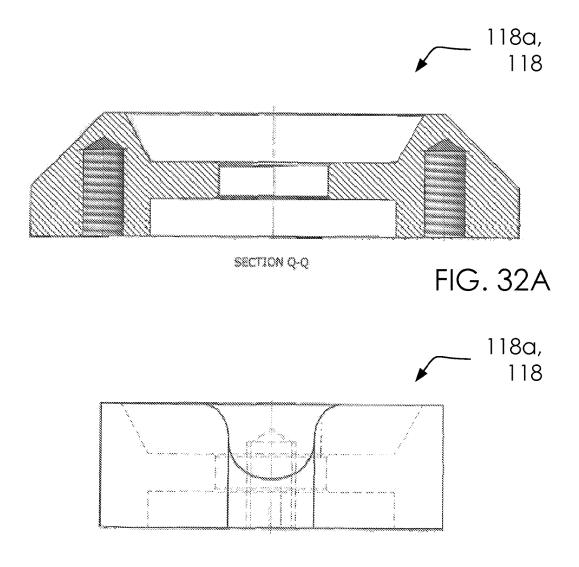


FIG. 32B

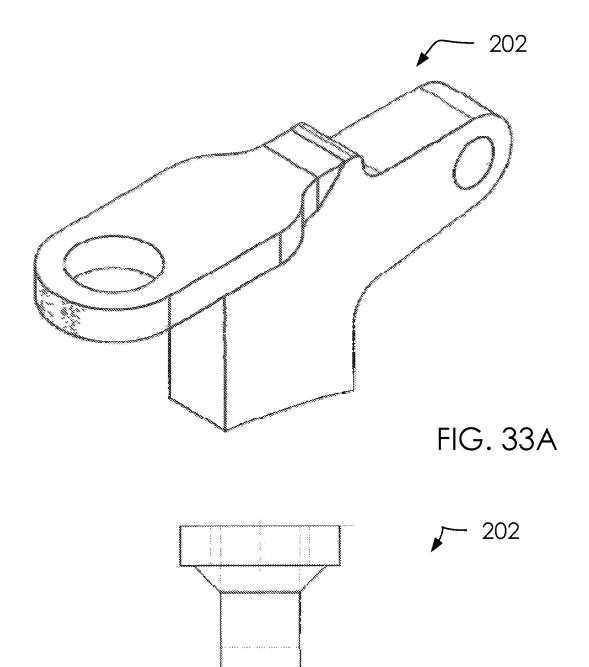


FIG. 33B

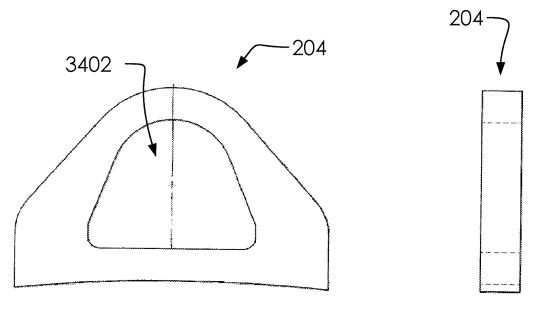


FIG. 34A

FIG. 34B

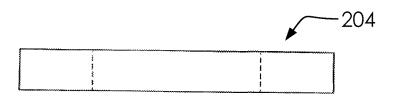


FIG. 34C

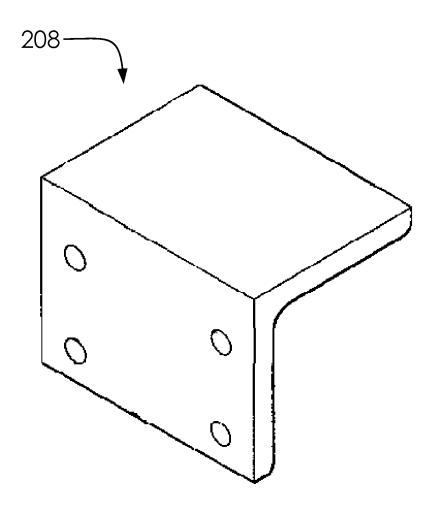


FIG. 35

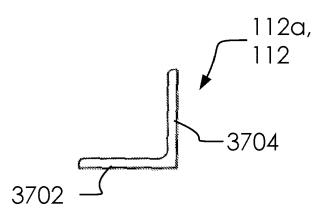


FIG. 37A

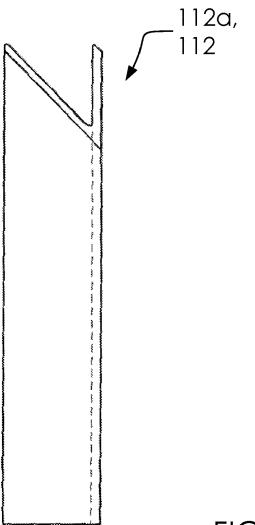


FIG. 37B

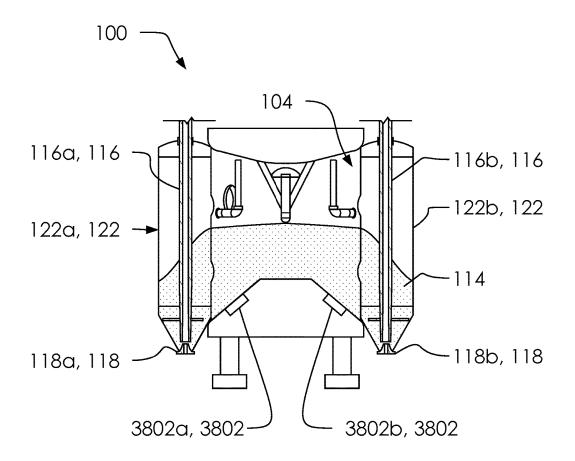


FIG. 38

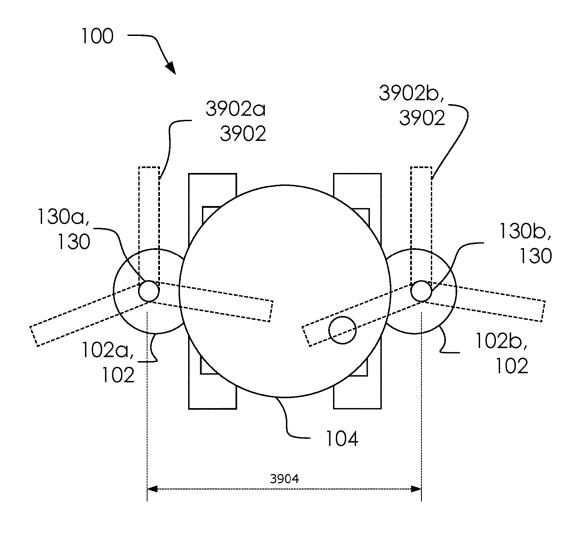


FIG. 39

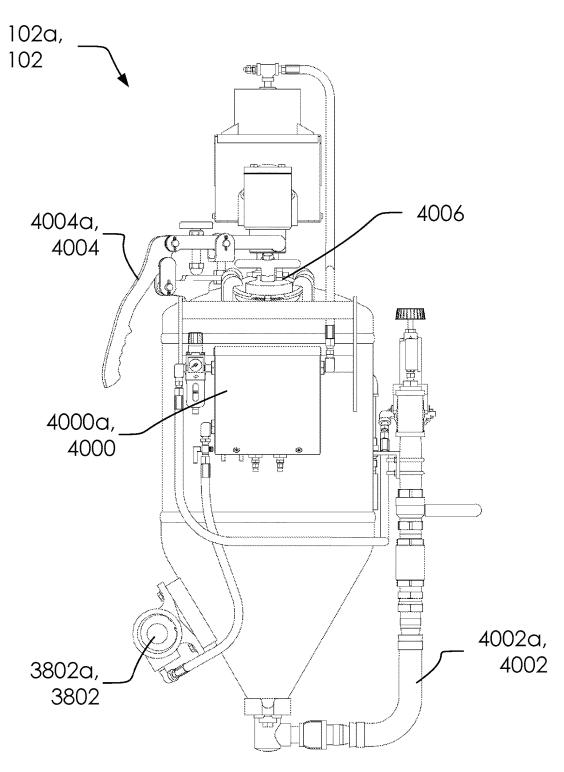
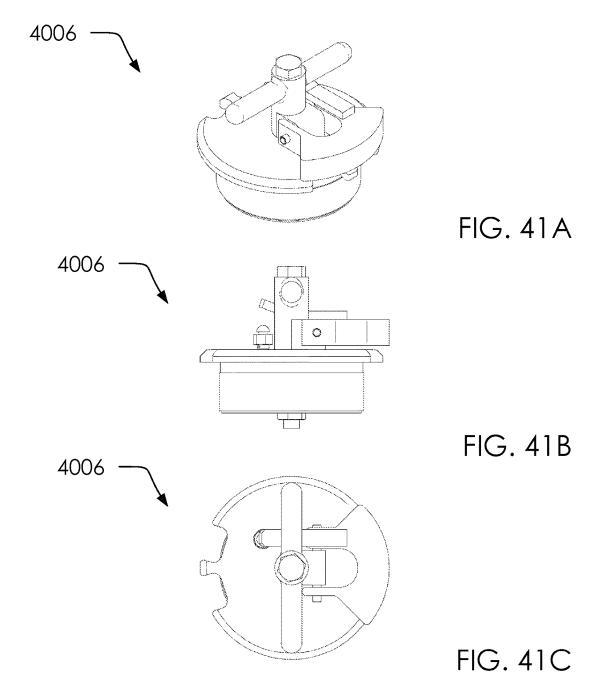



FIG. 40

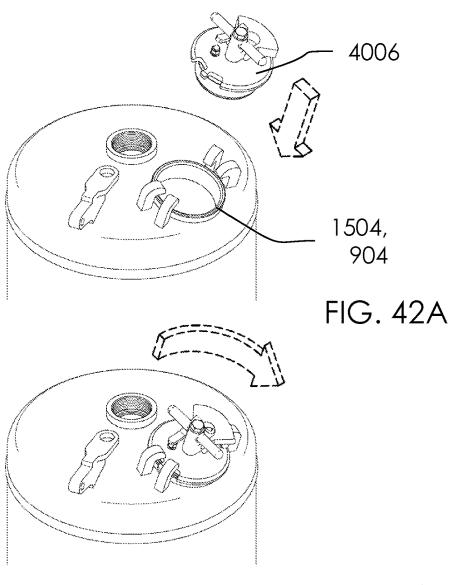


FIG. 42B

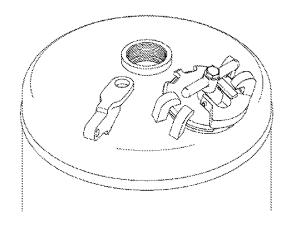


FIG. 42C

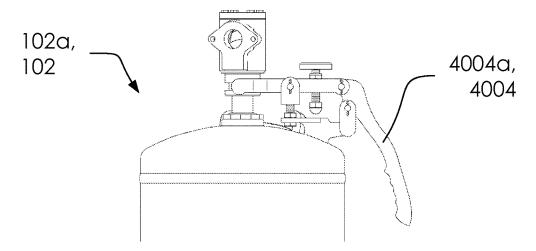


FIG. 43A

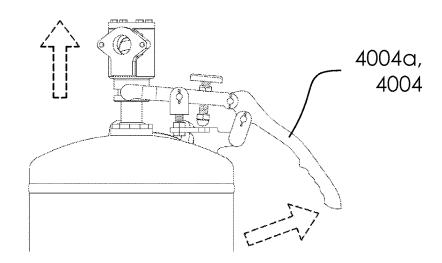


FIG. 43B

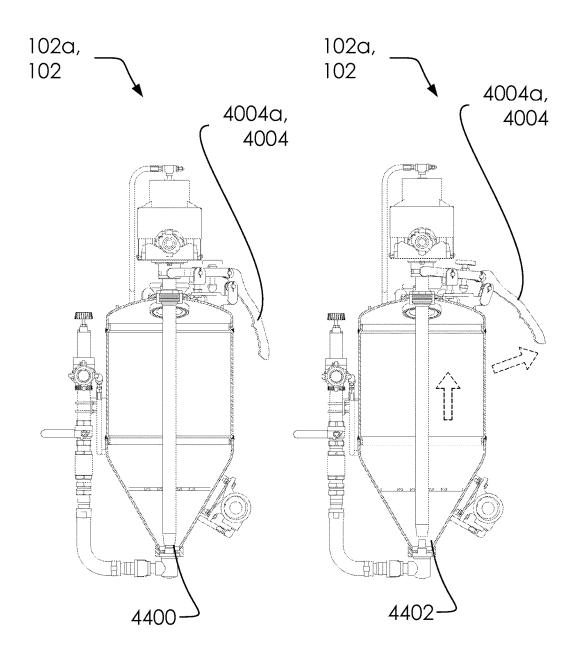


FIG. 44A

FIG. 44B

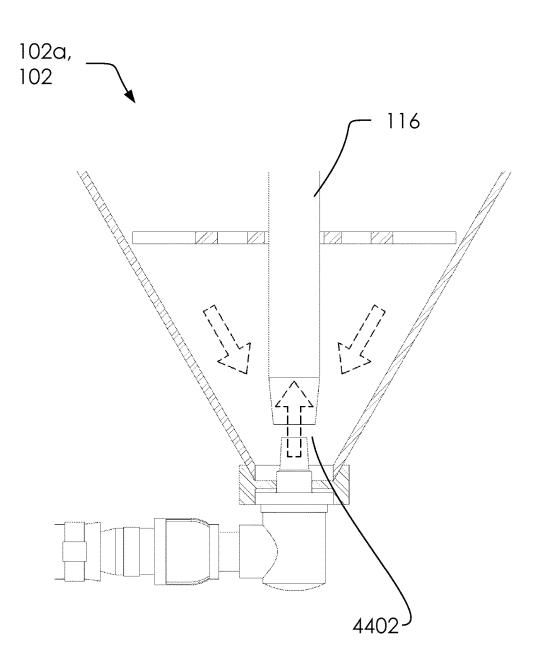


FIG. 45

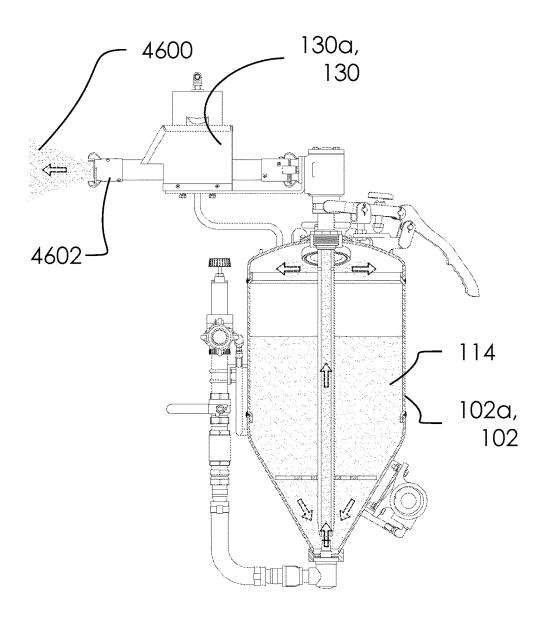


FIG. 46

TANK ASSEMBLY AND METHOD OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit to U.S. Patent Application No. 61/773,816 filed on Mar. 7, 2013, PCT/US14/22170 filed on Mar. 7, 2014, Ser. No. 14/773,694 filed on Sep. 8, 2015, Ser. No. 14/848,330 filed on Sep. 8, 2015 and 62/398, 225 filed on Sep. 22, 2016.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT (IF APPLICABLE)

Not applicable.

REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX (IF APPLICABLE)

Not applicable.

BACKGROUND OF THE INVENTION

None of the known inventions and patents, taken either singularly or in combination, is seen to describe the instant disclosure as claimed.

BRIEF SUMMARY OF THE INVENTION

A tank assembly. Said tank assembly comprises a one or more blister assemblies, a shell assembly, a one or more air inlet hoses, a one or more spray equipment and a slurry 35 assembly 108 at cross-section C-C. mixture. Said one or more blister assemblies comprises a first blister assembly and a second blister assembly. Said one or more blister assemblies comprise a one or more draw tubes, a one or more cone flanges, a one or more head assemblies, a one or more shells, a one or more cone 40 assemblies, an air line assembly, a one or more snorkel assemblies, and a separation distance. Said one or more draw tubes comprise a first draw tube and a second draw tube. Said separation distance between said one or more draw tubes is configured to allow said one or more spray equipment to rotate freely on said one or more draw tubes without interfering with one another. Said one or more draw tubes selectively mate with said one or more cone flanges. Said one or more cone flanges are attached at a lower point 50 in said one or more cone assemblies and gather portions of said slurry mixture. Said tank assembly is configured to selectively channel said slurry mixture into said one or more draw tubes by opening a gap between said one or more draw tubes and said one or more cone flanges.

A tank assembly. Said tank assembly comprises a one or more blister assemblies, a shell assembly, a one or more air inlet hoses, a one or more spray equipment and a slurry mixture. Said one or more blister assemblies comprises a first blister assembly and a second blister assembly. Said one 60 or more blister assemblies comprise a one or more draw tubes, a one or more cone flanges, a one or more head assemblies, a one or more shells, a one or more cone assemblies, an air line assembly, a one or more snorkel assemblies, and a separation distance. Said one or more 65 draw tubes comprise a first draw tube and a second draw tube.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

- FIG. 1A illustrates a perspective first side view of a tank 5 assembly 100.
 - FIG. 1B illustrates an elevated front side view of a tank assembly 100 in cross-section.
 - FIG. 2A illustrates an elevated front side view of a tank assembly 100.
 - FIG. 2B illustrates an elevated first side view of a tank assembly 100.
 - FIG. 3A illustrates an elevated front side view of a tank assembly 100 at cross-section A-A.
- FIG. 3B illustrates an elevated first side view of a tank 15 assembly 100 at cross-section B-B.
 - FIG. 4A illustrates an elevated second side view of a tank assembly 100.
 - FIG. 4B illustrates an elevated back side view of a tank assembly 100.
 - FIG. 5A illustrates an elevated top side view of a tank assembly 100 with underlying structure in dashed lines.
 - FIG. 5B illustrates an elevated bottom side view of a tank assembly 100 with underlying structure in dashed lines.
- FIG. 6 illustrates an elevated first side view of a tank 25 assembly 100.
 - FIG. 7 illustrates an elevated detailed view of a tank assembly 100.
 - FIG. 8 illustrates an elevated front side view of a tank assembly 100 with underlying structure in dashed lines.
- FIG. 9A illustrates an elevated top side view of a head assembly 108.
- FIG. 9B illustrates an elevated first side view of a head assembly 108.
- FIG. 10 illustrates an elevated front side view of a head
- FIG. 11A illustrates an elevated top side view of a one or more head assemblies 120.
- FIG. 11B illustrates an elevated front side view of a one or more head assemblies 120.
- FIG. 11C illustrates an elevated front side view of a one or more head assemblies 120 at cross-section D-D.
- FIG. 12A illustrates an elevated top side view of a fill ring
- FIG. 12B illustrates an elevated front side view of a fill ring 904 with cross-section E-E.
- FIG. 12C illustrates an elevated front side view of a fill ring 904.
- FIG. 13A illustrates an elevated top side view of a reinforcement ring 906.
- FIG. 13B illustrates an elevated front side view of a reinforcement ring 906.
- FIG. 14A illustrates an elevated first side view of a tripod support 910.
- FIG. 14B illustrates an elevated front side view of a tripod 55 support 910.
 - FIG. 15A illustrates an elevated top side view of a shell assembly 104.
 - FIG. 15B illustrates an elevated front side view of a shell assembly 104.
 - FIG. 16A illustrates an elevated front side view of a shell assembly 104 with cross-section F-F.
 - FIG. 16B illustrates an elevated first side view of a shell assembly 104.
 - FIG. 17A illustrates an elevated top side view of a hand hole rings 1504.
 - FIG. 17B illustrates an elevated front side view of a hand hole rings 1504.

- FIG. 17C illustrates an elevated first side view of a hand hole rings 1504.
- FIG. **18**A illustrates an elevated top side view of a first blister assembly **102***a*.
- FIG. **18**B illustrates an elevated second side view of a first 5 blister assembly **102**a.
- FIG. 19A illustrates an elevated top side view of a first blister assembly 102a with underlying structure in dashed line
- FIG. **19**B illustrates an elevated front side view of a first 10 blister assembly **102**a with cross-section J-J.
- FIG. 19C illustrates an elevated first side view of a first blister assembly 102a.
- FIG. 20A illustrates an elevated top side view of a cone assembly 110.
- FIG. 20B illustrates an elevated front side view of a cone assembly 110.
- FIG. **20**C illustrates an elevated front side view of a cone assembly **110** with cross-section G-G.
- FIG. 21A illustrates an elevated top side view of a one or 20 airline bracket 208. more bridges 1802. FIG. 36B illustrates
- FIG. 21B illustrates an elevated front side view of a one or more bridges 1802 at cross-section H-H.
- FIG. 22A illustrates an elevated top side view of a cone cap plate 2004.
- FIG. 22B illustrates an elevated front side view of a cone cap plate 2004.
- FIG. 23A illustrates an elevated top side view of a first head assembly 120a.
- FIG. 23B illustrates an elevated front side view of a first 30 head assembly 120a.
- FIG. 23C illustrates an elevated front side view of a first head assembly 120a at cross-section K-K.
- FIG. 24A illustrates an elevated top side view of a blister head 2302.
- FIG. 24B illustrates an elevated front side view of a blister head 2302.
- FIG. 24C illustrates an elevated front side view of a blister head 2302 with cross-section L-L.
- FIG. 25A illustrates an elevated top side view of a first 40 blister coupling 130a.
- FIG. 25B illustrates an elevated front side view of a first blister coupling 130a.
- FIG. 25C illustrates an elevated bottom side view of a first blister coupling 130a.
- FIG. 26A illustrates an elevated bottom side view of a first blister coupling 130a with cross-section M-M.
- FIG. $26\hat{B}$ illustrates an elevated bottom side view of a first blister coupling 130a with detailed view V.
- FIG. 27A illustrates an elevated top side view of a one or 50 more shells 122.
- FIG. 27B illustrates an elevated front side view of a one or more shells 122.
- FIG. **28** illustrates an elevated top side view of a first cone assembly **124***a*.
- FIG. 29A illustrates an elevated top side view of a one or more cone assemblies 124.
- FIG. **29**B illustrates an elevated front side view of a one or more cone assemblies **124**.
- FIG. 30A illustrates an elevated top side view of a one or 60 more spider guides 1902.
- FIG. 30B illustrates an elevated front side view of a one or more spider guides 1902.
- FIG. 31A illustrates an elevated top side view of a one or more cone flanges 118.
- FIG. 31B illustrates an elevated front side view of a one or more cone flanges 118.

4

- FIG. 31C illustrates an elevated bottom side view of a one or more cone flanges 118.
- FIG. 32A illustrates an elevated front side view of a one or more cone flanges 118 at cross-section Q-Q.
- FIG. 32B illustrates an elevated first side view of a one or more cone flanges 118.
- FIG. 33A illustrates a perspective front side view of a one or more rocker arm pedestals 202.
- FIG. 33B illustrates an elevated front side view of a one or more rocker arm pedestals 202.
- FIG. 34A illustrates an elevated front side view of a one or more hoisting lugs 204.
- FIG. 34B illustrates an elevated first side view of a one or more hoisting lugs 204.
- 5 FIG. 34C illustrates an elevated top side view of a one or more hoisting lugs 204.
 - FIG. 35 illustrates a perspective overview of an airline bracket 208.
- FIG. 36A illustrates an elevated back side view of an
- FIG. 36B illustrates an elevated first side view of an airline bracket 208.
- FIG. $36\mathrm{C}$ illustrates an elevated top side view of an airline bracket 208.
- FIG. 37A illustrates an elevated top side view of a one or more leg covers 112.
- FIG. 37B illustrates an elevated front side view of a one or more leg covers 112.
- FIG. 38 illustrates an elevated front side view of a tank assembly 100 with a cross-section.
- FIG. 39 illustrates an elevated top side view of a tank assembly 100.
- FIG. 40 illustrates an elevated front side view of a first blister assembly 102a.
 - FIG. 41A illustrates a perspective overview of a cap 4006.
- FIG. 41B illustrates an elevated front side view of a cap 4006.
- FIG. 41C illustrates an elevated top side view of a cap 4006.
- FIG. 42A illustrates a perspective overview of a cap 4006 detached.
- FIG. **42**B illustrates a perspective overview of a cap **4006** attaching.
- FIG. **42**C illustrates a perspective overview of a cap **4006** attached.
- FIG. 43A illustrates an elevated front side view of a first handle 4004a in a first configuration.
- FIG. 43B illustrates an elevated front side view of a first handle 4004a in a second configuration.
- FIG. **44**A illustrates an elevated front side view of a first configuration **4400**.
- FIG. 44B illustrates an elevated front side view of a second configuration 4402.
- FIG. **45** illustrates an elevated front side view of a second 55 configuration **4402**.
 - FIG. 46 illustrates an elevated front side view of a one or more blister assemblies 102 cross-section view in action.

DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable any person skilled in the art to make and use the invention as claimed and is provided in the context of the particular examples discussed below, variations of which will be readily apparent to those skilled in the art. In the interest of clarity, not all features of an actual implementation are

described in this specification. It will be appreciated that in the development of any such actual implementation (as in any development project), design decisions must be made to achieve the designers' specific goals (e.g., compliance with system- and business-related constraints), and that these 5 goals will vary from one implementation to another. It will also be appreciated that such development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the field of the appropriate art having the benefit of this disclosure. 10 a second side 216b Accordingly, the claims appended hereto are not intended to be limited by the disclosed embodiments, but are to be accorded their widest scope consistent with the principles and features disclosed herein.

5

These parts are illustrated in the figures and discussed 15 a one or more elbows 306 below:

- a tank assembly 100
- a one or more blister assemblies 102
- a first blister assembly 102a
- a second blister assembly 102b
- a shell assembly 104
- a one or more leg assemblies 106
- a first leg assembly 106a
- a second leg assembly 106b
- a head assembly 108
- a cone assembly 110
- a one or more leg covers 112
- a first leg cover 112a
- a second leg cover 112b
- a third leg cover 112c
- a fourth leg cover 112d
- a slurry mixture 114
- a one or more draw tubes 116
- a first draw tube 116a
- a second draw tube 116b
- a one or more cone flanges 118
- a first cone flange 118a
- a second cone flange 118b
- a one or more head assemblies 120
- a first head assembly 120a
- a second head assembly 120b
- a one or more shells 122
- a first shell 122a
- a second shell 122b
- a one or more cone assemblies 124
- a first cone assembly 124a
- a second cone assembly 124b
- a one or more lower apertures 126
- a first lower aperture 126a
- a second lower aperture 126b
- a one or more middle apertures 127
- a first middle aperture 127a
- a second middle aperture 127b
- a one or more upper apertures 128
- a first upper aperture 128a
- a second upper aperture 128b
- a one or more blister couplings 130
- a first blister coupling 130a
- a second blister coupling 130b
- a one or more rocker arm pedestals 202
- a first rocker arm pedestal 202a
- a second rocker arm pedestal 202b
- a one or more hoisting lugs 204
- a first hoisting lug 204a
- a second hoisting lug 204b
- a one or more control box mounting bracket 206
- a first control box mounting bracket 206a

6

- a second control box mounting bracket 206b a third control box mounting bracket 206c
- a fourth control box mounting bracket 206d
- an airline bracket 208
- a name plate bracket 210
- a name plate 212
- a warning plate 214
- a one or more sides 216
- a first side 216a
- an outer body 218
- an air line assembly 300
- a nipple 302
- a close nipple 304
- a first elbow 306a
- a second elbow 306b
- a nipple 308
- a moody nut gasket 310
- 20 a moody nut 312
 - a nipple TOE 314
 - a reducing elbow 316
 - an adjustable nipple 318
 - a pop-up cylinder assembly 320
- 25 a fill ring 322
 - a fill plug seat ring 324
 - a snap ring 326
- a one or more vibrator mounting brackets 328
- a first vibrator mounting bracket 328a
- 30 a second vibrator mounting bracket 328b
- a one or more snorkel assemblies 330
 - a first snorkel assembly 330a
- a second snorkel assembly 330b
- a head 902
- 35 a fill ring 904
 - a reinforcement ring 906
 - a coupling 908
 - a tripod support 910
 - a first support 910a
- 40 a second support 910b
 - a third support 910c

 - a head top 1002
 - a full couplings 1502
 - a hand hole rings 1504
- 45 a one or more threaded couplings 1506
 - a first threaded coupling 1506a
 - a second threaded coupling 1506b
 - a one or more nipples 1508
 - a first nipple 1508a
- 50 a second nipple 1508b
 - a one or more elbow 1510
 - a first elbow 1510a
 - a second elbow 1510b
 - a one or more pipe 1512
- 55 a first pipe **1512***a*
 - a second pipe 1512b
 - a half coupling 1514
 - an interior volume 1516
 - an exterior environment 1518
- 60 a first side 1800a
 - a second side 1800b
 - a front side 1800c
 - a back side 1800d
 - a one or more bridges 1802
- 65 a first bridge 1802a
 - a second bridge 1802b
 - a one or more spider guides 1902

a first spider guide 1902a

a second spider guide 1902b

a cone body 2002

a cone cap plate 2004

a blister head 2302

a blister coupling 2304

a cone flange 2802

a center aperture 3002

a one or more extensions 3004

a first extension 3004a

a second extension 3004b

a third extension 3004c

a one or more right apertures 3006

a first right aperture 3006a

a second right aperture 3006b

a third right aperture 3006c

a one or more left apertures 3008

a first left aperture 3008a

a second left aperture 3008b

a third left aperture 3008c

a center aperture 3102

a one or more threaded sockets 3104

a first threaded socket 3104a

a second threaded socket 3104b

an upper fitting 3106

a lower fitting 3108

a center gap 3110

a center aperture 3402

a first side 3702

a second side 3704

a one or more vibrators 3802

a first vibrator 3802a

a second vibrator 3802b

a one or more spray equipment 3902

a first spray equipment 3902a

a second spray equipment 3902b

a separation distance 3904

a one or more control boxes 4000

a first control box 4000a

a second control box 4000b

a one or more air inlet hoses 4002

a first air inlet hose 4002a

a second air inlet hose 4002b

a one or more handles 4004

a first handle 4004a

a second handle 4004b

a cap 4006

a first configuration 4400

a second configuration 4402

a spray slurry 4600

a nozzle 4602

FIG. 1A illustrates a perspective first side view of a tank assembly 100.

FIG. 1B illustrates an elevated front side view of a tank 55 assembly 100 in cross-section.

In one embodiment, said tank assembly 100 can comprise said one or more blister assemblies 102, said shell assembly 104, said one or more leg assemblies 106, said head assembly 108, said cone assembly 110 and said second upper 60 aperture 128b.

In one embodiment, said one or more blister assemblies 102 can comprise said first blister assembly 102a, said second blister assembly 102b, said slurry mixture 114, said second draw tube 116b, said second cone flange 118b, said 65 second cone flange 118b, said second head assembly 120b, said second shell 122b, said second cone assembly 124b,

8

said second lower aperture 126b, said second middle aperture 127b and said second blister coupling 130b.

In one embodiment, said first blister assembly 102a can comprise said first cone flange 118a.

In one embodiment, said second blister assembly 102b can comprise said second cone flange 118b.

In one embodiment, said one or more leg assemblies 106 can comprise said one or more leg covers 112.

In one embodiment, said one or more leg covers 112 can comprise said first leg cover 112a, said second leg cover 112b, said third leg cover 112c and said fourth leg cover 112d.

In one embodiment, said one or more draw tubes **116** can comprise said first draw tube **116***a* and said second draw 15 tube **116***b*.

In one embodiment, said one or more cone flanges 118 can comprise said first cone flange 118a and said second cone flange 118b.

In one embodiment, said one or more head assemblies 120 can comprise said first head assembly 120*a*, said second head assembly 120*b* and said one or more blister couplings 130.

In one embodiment, said first head assembly 120a can comprise said first blister coupling 130a.

In one embodiment, said second head assembly **120***b* can comprise said second blister coupling **130***b*.

In one embodiment, said one or more shells 122 can comprise said first shell 122*a* and said second shell 122*b*.

In one embodiment, said one or more cone assemblies **124** 30 can comprise said first cone assembly **124***a* and said second cone assembly **124***b*.

In one embodiment, said one or more lower apertures 126 can comprise said first lower aperture 126a and said second lower aperture 126b.

In one embodiment, said one or more upper apertures 128 can comprise said first upper aperture 128a and said second upper aperture 128b.

In one embodiment, said one or more blister couplings 130 can comprise said first blister coupling 130a and said second blister coupling 130b.

In one embodiment, said one or more middle apertures 127 can comprise said first middle aperture 127a and said second middle aperture 127b.

Said tank assembly **100** can comprise a system for spray-45 ing a dustless stream for removal of paint, grime, chemicals, or similar.

Said tank assembly **100** is similar to a system(s) incorporated by reference to this application (Ser. No. 14/848,330 filed on Sep. 8, 2015, Ser. No. 14/773,694 filed on Sep. 8, 2015, PCT/US14/22170 filed on Mar. 7, 2014 and 61/773, 816 filed on Mar. 7, 2013) but with at least one distinction in that said one or more blister assemblies **102** are designed to provide more than one outflowing stream from said tank assembly **100**.

Said one or more leg assemblies 106 can support upper portions of said tank assembly 100, such as said one or more blister assemblies 102 and said shell assembly 104, as illustrated.

In one embodiment, said one or more blister assemblies 102 and said shell assembly 104 can comprise three chambers for storing and distributing said slurry mixture 114.

In one embodiment, said slurry mixture 114 can comprise a proprietary mixture of abrasive and fluids such as water.

Said one or more blister assemblies 102 and said shell assembly 104 are in fluid connection at said one or more lower apertures 126 and said one or more upper apertures 128 which allow portions of said slurry mixture 114 to:

beginning in said shell assembly 104 and then slide down and into said one or more blister assemblies 102 toward said one or more cone flanges 118 and the bottom portion of said one or more draw tubes 116.

Said one or more draw tubes **116** and said **118** can operate 5 as with the parent application to this application, namely the pickup and delivery of said slurry mixture **114** through said one or more draw tubes **116** with assistance of an air hose (discussed below) attached to said one or more cone flanges **118**.

Said one or more leg assemblies 106 are optional and comprise a means of supporting the weight and mass of said tank assembly 100, as is known in the art. In one embodiment, said tank assembly 100 can be built into a trailer.

In one embodiment, said one or more blister couplings 15 130 can allow portions of said one or more draw tubes 116 to pass into and out of said one or more blister assemblies 102 without breaking a seal between the volume within said one or more blister assemblies 102 and the outside environment.

FIG. 2A illustrates an elevated front side view of a tank assembly 100.

FIG. 2B illustrates an elevated first side view of a tank assembly 100.

In one embodiment, said one or more rocker arm pedes- 25 tals **202** can comprise said first rocker arm pedestal **202***a* and said second rocker arm pedestal **202***b*.

In one embodiment, said one or more control box mounting bracket **206** can comprise said first control box mounting bracket **206**a, said second control box mounting bracket **206**b, said third control box mounting bracket **206**c and said fourth control box mounting bracket **206**d.

In one embodiment, said one or more sides 216 can comprise said first side 216a and said second side 216b.

In one embodiment, said tank assembly 100 can comprise 35 said one or more rocker arm pedestals 202, said one or more hoisting lugs 204, said one or more control box mounting bracket 206, said airline bracket 208, said name plate bracket 210, said name plate 212 and said warning plate 214.

In one embodiment, said shell assembly 104 can comprise said one or more rocker arm pedestals 202, said one or more hoisting lugs 204, said one or more control box mounting bracket 206, said airline bracket 208, said name plate bracket 210, said name plate 212, said warning plate 214 and said outer body 218.

assembly 100.

In one embodiment, said shell assembly 104 can comprise 40 assembly 100.

In one embodiment, said shell assembly 104 can comprise 40 assembly 100.

In one embodiment, said shell assembly 104 can comprise 40 assembly 100.

Said one or more rocker arm pedestals 202 can allow for the attachment of a rocker arm, as discussed below.

Said parts 204-214 can attach to various exterior locations of said shell assembly 104 as illustrated and known in the art.

In one embodiment, said shell assembly 104 can comprise a substantially cylindrical vessel with said one or more blister assemblies 102 attached on said one or more sides 216.

Said tank assembly 100 can comprise a stainless steel 55 material.

In one embodiment, said one or more hoisting lugs 204 can be useful for lifting and moving portions of said tank assembly 100.

Said one or more control box mounting bracket 206 can 60 hold a control system, as is known in the art.

FIG. 3A illustrates an elevated front side view of a tank assembly 100 at cross-section A-A.

FIG. 3B illustrates an elevated first side view of a tank assembly 100 at cross-section B-B.

In one embodiment, said one or more elbows 306 can comprise said first elbow 306a and said second elbow 306b.

10

In one embodiment, said one or more vibrator mounting brackets 328 can comprise said first vibrator mounting bracket 328a and said second vibrator mounting bracket 328b.

In one embodiment, said air line assembly 300 can comprise said nipple 302, said close nipple 304, said one or more elbows 306, said nipple 308, said moody nut gasket 310, said moody nut 312, said nipple TOE 314, said reducing elbow 316, said adjustable nipple 318, said pop-up cylinder assembly 320, said fill ring 322, said fill plug seat ring 324 and said snap ring 326.

In one embodiment, said one or more snorkel assemblies 330 can comprise said first snorkel assembly 330a and said second snorkel assembly 330b.

In one embodiment, said tank assembly 100 can comprise said air line assembly 300, said air line assembly 300, said nipple 302, said close nipple 304, said one or more elbows 306, said nipple 308, said moody nut gasket 310, said moody nut 312, said nipple TOE 314, said reducing elbow 316, said adjustable nipple 318, said pop-up cylinder assembly 320, said fill ring 322, said fill plug seat ring 324, said snap ring 326, said one or more vibrator mounting brackets 328 and said one or more snorkel assemblies 330.

In one embodiment, said air line assembly 300 can comprise a plumbing assembly. Likewise, said one or more snorkel assemblies 330 are adapted to create a fluid connection between an outside environment and the interior of said tank assembly 100.

Said pop-up cylinder assembly 320, said fill ring 322, said fill plug seat ring 324 and said snap ring 326 can mate with said head assembly 108. In one embodiment, said head assembly 108 can receive a portion of said slurry mixture 114 for filling said shell assembly 104 and said one or more blister assemblies 102.

FIG. 4A illustrates an elevated second side view of a tank assembly 100.

FIG. 4B illustrates an elevated back side view of a tank assembly 100.

In one embodiment, all welding and fabrication can be done in accordance with ASME boiler and pressure vessel code for unfired pressure vessels. Working pressure can comprise up to 150 PSI and working temperature of 300 degrees F. In one embodiment, said tank assembly 100 can comprise a volume of 25.48 cubic feet.

FIG. 5A illustrates an elevated top side view of a tank assembly 100 with underlying structure in dashed lines.

FIG. **5**B illustrates an elevated bottom side view of a tank assembly **100** with underlying structure in dashed lines.

FIG. 6 illustrates an elevated first side view of a tank assembly 100.

FIG. 7 illustrates an elevated detailed view of a tank assembly 100.

FIG. 8 illustrates an elevated front side view of a tank assembly 100 with underlying structure in dashed lines.

FIG. 9A illustrates an elevated top side view of a head assembly 108.

FIG. 9B illustrates an elevated first side view of a head assembly 108.

In one embodiment, said tripod support 910 can comprise said first support 910a, said second support 910b and said third support 910c.

In one embodiment, said head assembly 108 can comprise said head 902, said fill ring 904, said reinforcement ring 906, said coupling 908 and said tripod support 910.

In one embodiment, a portion of said slurry mixture 114 can be collected in said head assembly 108 and passed through said fill ring 904 into said coupling 908 and further into said shell assembly 104.

FIG. 10 illustrates an elevated front side view of a head 5 assembly 108 at cross-section C-C.

FIG. 11A illustrates an elevated top side view of a one or more head assemblies 120.

FIG. 11B illustrates an elevated front side view of a one or more head assemblies 120.

FIG. 11C illustrates an elevated front side view of a one or more head assemblies 120 at cross-section D-D.

As illustrated, said one or more head assemblies 120 can comprise an embodiment without said one or more blister couplings 130 having been installed as yet.

In one embodiment, said one or more head assemblies 120 can be welded to said one or more shells 122; and said one or more shells 122 can be welded to said one or more cone assemblies 124.

904.

FIG. 12B illustrates an elevated front side view of a fill ring 904 with cross-section E-E.

FIG. 12C illustrates an elevated front side view of a fill ring 904.

FIG. 13A illustrates an elevated top side view of a reinforcement ring 906.

FIG. 13B illustrates an elevated front side view of a reinforcement ring 906.

FIG. 14A illustrates an elevated first side view of a tripod 30 support 910.

FIG. 14B illustrates an elevated front side view of a tripod support 910.

FIG. 15A illustrates an elevated top side view of a shell assembly 104.

FIG. 15B illustrates an elevated front side view of a shell assembly 104.

In one embodiment, said one or more threaded couplings 1506 can comprise said first threaded coupling 1506a and said second threaded coupling 1506b.

In one embodiment, said one or more elbow 1510 can comprise said first elbow 1510a and said second elbow 1510b.

In one embodiment, said one or more pipe 1512 can comprise said first pipe 1512a and said second pipe 1512b. 45

In one embodiment, said tank assembly 100 can comprise said interior volume 1516 and said exterior environment 1518.

In one embodiment, said one or more snorkel assemblies 330 can comprise said one or more threaded couplings 1506, 50 said one or more nipples 1508, said one or more elbow 1510 and said one or more pipe 1512.

In one embodiment, said first snorkel assembly 330a can comprise said first threaded coupling 1506a, said first nipple 1508a, said first elbow 1510a and said first pipe 1512a.

In one embodiment, said second snorkel assembly 330b can comprise said second threaded coupling 1506b, said second nipple 1508b, said second elbow 1510b and said second pipe 1512b.

In one embodiment, said one or more snorkel assemblies 60 330 can enter in said outer body 218 and turn up toward an upper portion of said shell assembly 104 so as to maximize the likelihood of being above said slurry mixture 114 within said shell assembly 104.

In one embodiment, said hand hole rings 1504 can com- 65 cap plate 2004. prise a location for a user to access into said exterior environment 1518.

12

FIG. 16A illustrates an elevated front side view of a shell assembly 104 with cross-section F-F.

FIG. 16B illustrates an elevated first side view of a shell assembly 104.

FIG. 17A illustrates an elevated top side view of a hand hole rings 1504.

FIG. 17B illustrates an elevated front side view of a hand hole rings 1504.

FIG. 17C illustrates an elevated first side view of a hand hole rings 1504.

FIG. 18A illustrates an elevated top side view of a first blister assembly 102a.

FIG. 18B illustrates an elevated second side view of a first blister assembly 102a.

In one embodiment, said one or more bridges 1802 can comprise said first bridge 1802a and said second bridge **1802***b*.

In one embodiment, said one or more blister assemblies FIG. 12A illustrates an elevated top side view of a fill ring 20 102 can comprise said first side 1800a, said second side **1800**b, said front side **1800**c, said back side **1800**d, said back side 1800d, said one or more bridges 1802, said first bridge 1802a, said second bridge 1802b and said second bridge 1802b.

> In one embodiment, said first blister assembly 102a can comprise said one or more bridges 1802, said first bridge **1802***a* and said second bridge **1802***b*.

As noted above, said one or more blister assemblies 102 can comprise said one or more head assemblies 120, said one or more shells 122, said one or more cone assemblies 124, said one or more cone flanges 118, said one or more bridges 1802, and said one or more blister couplings 130. Said one or more blister couplings 130 can allow a portion of said one or more draw tubes 116 to pass through said one 35 or more head assemblies 120.

Said one or more bridges 1802 can protect and reinforce said one or more shells 122 at said second side 1800b.

FIG. 19A illustrates an elevated top side view of a first blister assembly 102a with underlying structure in dashed

FIG. 19B illustrates an elevated front side view of a first blister assembly 102a with cross-section J-J.

FIG. 19C illustrates an elevated first side view of a first blister assembly 102a.

In one embodiment, said one or more spider guides 1902 can comprise said first spider guide 1902a and said second spider guide 1902b.

In one embodiment, said first blister assembly 102a can comprise said first spider guide 1902a.

In one embodiment, said second blister assembly 102b can comprise said second spider guide 1902b.

FIG. 20A illustrates an elevated top side view of a cone assembly 110.

FIG. 20B illustrates an elevated front side view of a cone 55 assembly 110.

FIG. 20C illustrates an elevated front side view of a cone assembly 110 with cross-section G-G.

In one embodiment, said cone assembly 110 can comprise said cone body 2002 and said cone cap plate 2004.

FIG. 21A illustrates an elevated top side view of a one or more bridges 1802.

FIG. 21B illustrates an elevated front side view of a one or more bridges **1802** at cross-section H-H.

FIG. 22A illustrates an elevated top side view of a cone

FIG. 22B illustrates an elevated front side view of a cone cap plate 2004.

FIG. 23A illustrates an elevated top side view of a first head assembly 120a.

FIG. 23B illustrates an elevated front side view of a first head assembly 120a.

FIG. 23C illustrates an elevated front side view of a first 5 head assembly 120a at cross-section K-K.

In one embodiment, said first head assembly 120a can comprise said blister head 2302 and said blister coupling

FIG. **24**A illustrates an elevated top side view of a blister 10 head **2302**.

FIG. 24B illustrates an elevated front side view of a blister head 2302.

FIG. 24C illustrates an elevated front side view of a blister head 2302 with cross-section L-L.

FIG. 25A illustrates an elevated top side view of a first blister coupling 130a.

FIG. **25**B illustrates an elevated front side view of a first blister coupling **130***a*.

FIG. **25**C illustrates an elevated bottom side view of a first 20 blister coupling **130***a*.

FIG. 26A illustrates an elevated bottom side view of a first blister coupling 130a with cross-section M-M.

FIG. **26**B illustrates an elevated bottom side view of a first blister coupling **130***a* with detailed view V.

FIG. 27A illustrates an elevated top side view of a one or more shells 122.

FIG. 27B illustrates an elevated front side view of a one or more shells 122.

FIG. **28** illustrates an elevated top side view of a first cone 30 assembly **124***a*.

In one embodiment, said tank assembly 100 can comprise said cone flange 2802.

FIG. 29A illustrates an elevated top side view of a one or more cone assemblies 124.

FIG. 29B illustrates an elevated front side view of a one or more cone assemblies 124.

FIG. 30A illustrates an elevated top side view of a one or more spider guides 1902.

FIG. 30B illustrates an elevated front side view of a one 40 or more spider guides 1902.

In one embodiment, said one or more extensions 3004 can comprise said first extension 3004a, said second extension 3004b and said third extension 3004c.

In one embodiment, said one or more right apertures 3006 45 can comprise said first right aperture 3006a, said second right aperture 3006b and said third right aperture 3006c.

In one embodiment, said one or more left apertures 3008 can comprise said first left aperture 3008a, said second left aperture 3008b and said third left aperture 3008c.

In one embodiment, said one or more spider guides 1902 can comprise said center aperture 3002, said one or more extensions 3004, said first extension 3004a, said second extension 3004b, said third extension 3004c, said one or more right apertures 3006, said first right aperture 3006a, said second right aperture 3006b, said third right aperture 3006c, said one or more left apertures 3008, said first left aperture 3008a, said second left aperture 3008b and said third left aperture 3008c.

In one embodiment, a portion of said one or more draw 60 tubes 116 can pass through said center aperture 3002 so as to center and stabilize said one or more draw tubes 116 within said one or more blister assemblies 102. In one embodiment, said one or more right apertures 3006 and said one or more left apertures 3008 can allow portions of said 65 slurry mixture 114 to pass freely below said one or more spider guides 1902. In one embodiment, said one or more

14

spider guides 1902 can comprise a three points extending radially at 120 degree increments; namely said one or more extensions 3004, as illustrated. In one embodiment, said one or more extensions 3004 can press against an interior wall of said one or more blister assemblies 102.

FIG. 31A illustrates an elevated top side view of a one or more cone flanges 118.

FIG. 31B illustrates an elevated front side view of a one or more cone flanges 118.

FIG. 31C illustrates an elevated bottom side view of a one or more cone flanges 118.

In one embodiment, said center aperture 3102 can comprise said upper fitting 3106, said lower fitting 3108 and said center gap 3110.

In one embodiment, said one or more threaded sockets 3104 can comprise said first threaded socket 3104a and said second threaded socket 3104b.

In one embodiment, said one or more cone flanges 118 can comprise said center aperture 3102, said center aperture 3102, said upper fitting 3106, said lower fitting 3108 and said center gap 3110.

FIG. 32A illustrates an elevated front side view of a one or more cone flanges 118 at cross-section Q-Q.

FIG. 32B illustrates an elevated first side view of a one or 25 more cone flanges 118.

FIG. 33A illustrates a perspective front side view of a one or more rocker arm pedestals 202.

FIG. 33B illustrates an elevated front side view of a one or more rocker arm pedestals 202.

FIG. 34A illustrates an elevated front side view of a one or more hoisting lugs 204.

FIG. 34B illustrates an elevated first side view of a one or more hoisting lugs 204.

FIG. 34C illustrates an elevated top side view of a one or more hoisting lugs 204.

FIG. 35 illustrates a perspective overview of an airline bracket 208.

FIG. 36A illustrates an elevated back side view of an airline bracket 208.

FIG. 36B illustrates an elevated first side view of an airline bracket 208.

FIG. 36C illustrates an elevated top side view of an airline bracket 208.

FIG. 37A illustrates an elevated top side view of a one or more leg covers 112.

FIG. 37B illustrates an elevated front side view of a one or more leg covers 112.

In one embodiment, said first leg cover 112a can comprise said first side 3702 and said second side 3704.

FIG. 38 illustrates an elevated front side view of a tank assembly 100 with a cross-section.

In one embodiment, said one or more vibrators **3802** can comprise said first vibrator **3802***a* and said second vibrator **3802***b*.

Said one or more vibrators 3802 can attach to said one or more vibrator mounting brackets 328. In one embodiment, said one or more vibrators 3802 can shake said shell assembly 104 and/or other portions of said tank assembly 100 to ensure said slurry mixture 114 move fluidly toward said one or more cone flanges 118.

FIG. 39 illustrates an elevated top side view of a tank assembly 100.

In one embodiment, said one or more spray equipment 3902 can comprise said first spray equipment 3902a and said second spray equipment 3902b.

In one embodiment, said tank assembly 100 can comprise said separation distance 3904.

In one embodiment, said one or more blister assemblies 102 can comprise said one or more spray equipment 3902 and said separation distance 3904.

In one embodiment, said first blister assembly 102a can comprise said first spray equipment 3902a.

In one embodiment, said second blister assembly 102b can comprise said second spray equipment 3902b.

In one embodiment, said one or more spray equipment's 3902 can attach to said one or more blister assemblies 102 and said one or more draw tubes 116 with a rotating radius 10 at said one or more blister couplings 130, as illustrated.

In one embodiment, said one or more blister assemblies 102 can be separated by said separation distance 3904 being far enough apart that said one or more spray equipment's 3902 won't interfere with one another during rotation.

Since said one or more spray equipment's 3902 can be used separately, more than one user or purpose can be accomplished by said tank assembly 100 simultaneously. Each among said one or more spray equipment's 3902 can comprise an independent control system, and each of among 20 said one or more spray equipment's 3902 can use different nozzle sizes.

FIG. 40 illustrates an elevated front side view of a first blister assembly 102a.

In one embodiment, said one or more control boxes **4000** 25 can comprise said first control box **4000***a* and said second control box **4000***b*.

In one embodiment, said one or more air inlet hoses **4002** can comprise said first air inlet hose **4002***a* and said second air inlet hose **4002***b*.

In one embodiment, said one or more handles 4004 can comprise said first handle 4004a and said second handle 4004b.

In one embodiment, said tank assembly 100 can comprise said second control box 4000b, said second air inlet hose 35 4002b and said cap 4006.

FIG. 41A illustrates a perspective overview of a cap 4006. FIG. 41B illustrates an elevated front side view of a cap

FIG. 41C illustrates an elevated top side view of a cap 40 4006.

FIG. **42**A illustrates a perspective overview of a cap **4006** detached.

FIG. **42**B illustrates a perspective overview of a cap **4006** attaching.

FIG. **42**C illustrates a perspective overview of a cap **4006** attached.

here, said hand hole rings 1504 and/or said fill ring 904 can receive said cap 4006. Illustrations from the parent application to this one is used as a illustration of a potential 50 use of said cap 4006.

FIG. 43A illustrates an elevated front side view of a first handle 4004a in a first configuration.

FIG. 43B illustrates an elevated front side view of a first handle 4004a in a second configuration.

FIG. 44A illustrates an elevated front side view of a first configuration 4400.

FIG. 44B illustrates an elevated front side view of a second configuration 4402.

FIG. **45** illustrates an elevated front side view of a second 60 configuration **4402**.

FIG. 46 illustrates an elevated front side view of a one or more blister assemblies 102 cross-section view in action.

In one embodiment, said tank assembly 100 can comprise said nozzle 4602.

The following sentences are included for completeness of this disclosure with reference to the claims. 16

A tank assembly 100. Said tank assembly 100 comprises a one or more blister assemblies 102, a shell assembly 104, a one or more air inlet hoses 4002, a one or more spray equipment 3902 and a slurry mixture 114. Said one or more blister assemblies 102 comprises a first blister assembly 102a and a second blister assembly 102b. Said one or more blister assemblies 102 comprise a one or more draw tubes 116, a one or more cone flanges 118, a one or more head assemblies 120, a one or more shells 122, a one or more cone assemblies 124, an air line assembly 300, a one or more snorkel assemblies 330, and a separation distance 3904. Said one or more draw tubes 116 comprise a first draw tube 116a and a second draw tube 116b. Said separation distance 3904 between said one or more draw tubes 116 is configured to allow said one or more spray equipment 3902 to rotate freely on said one or more draw tubes 116 without interfering with one another. Said one or more draw tubes 116 selectively mate with said one or more cone flanges 118. Said one or more cone flanges 118 are attached at a lower point in said one or more cone assemblies 124 and gather portions of said slurry mixture 114. Said tank assembly 100 is configured to selectively channel said slurry mixture 114 into said one or more draw tubes 116 by opening a gap between said one or more draw tubes 116 and said one or more cone flanges 118. A tank assembly 100.

Said tank assembly 100 comprises a one or more blister assemblies 102, a shell assembly 104, a one or more air inlet hoses 4002, a one or more spray equipment 3902 and a slurry mixture 114. Said one or more blister assemblies 102 comprises a first blister assembly 102a and a second blister assembly 102b. Said one or more blister assemblies 102 comprise a one or more draw tubes 116, a one or more cone flanges 118, a one or more head assemblies 120, a one or more shells 122, a one or more cone assemblies 124, an air line assembly 300, a one or more snorkel assemblies 330, and a separation distance 3904. Said one or more draw tubes 116 comprise a first draw tube 116a and a second draw tube 116b.

Said one or more draw tubes 116 selectively mate with said one or more cone flanges 118.

Said one or more cone flanges 118 are attached at a lower point in said one or more cone assemblies 124 and gather portions of said slurry mixture 114. Said tank assembly 100 is configured to selectively channel said slurry mixture 114 into said one or more draw tubes 116 by opening a gap between said one or more draw tubes 116 and said one or more cone flanges 118.

Said separation distance 3904 between said one or more draw tubes 116 is configured to allow said one or more spray equipment 3902 to rotate freely on said one or more draw tubes 116 without interfering with one another.

Various changes in the details of the illustrated operational methods are possible without departing from the scope of the following claims. Some embodiments may combine the activities described herein as being separate steps. Similarly, one or more of the described steps may be omitted, depending upon the specific operational environment the method is being implemented in. It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the abovedescribed embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms "including" and "in

which" are used as the plain-English equivalents of the respective terms "comprising" and "wherein."

The invention claimed is:

1. A tank assembly, wherein:

said tank assembly comprises a one or more blister assemblies, a shell assembly, a one or more air inlet hoses, a one or more spray equipment and a slurry mixture;

said one or more blister assemblies comprises a first $_{10}$ blister assembly and a second blister assembly;

said one or more blister assemblies comprise a one or more draw tubes, a one or more cone flanges, a one or more head assemblies, a one or more shells, a one or more cone assemblies, an air line assembly, a one or more snorkel assemblies, and a separation distance;

said one or more draw tubes comprise a first draw tube and a second draw tube;

said separation distance between said one or more draw tubes is configured to allow said one or more spray equipment to rotate freely on said one or more draw tubes without interfering with one another;

said one or more draw tubes selectively mate with said one or more cone flanges;

said one or more cone flanges are attached at a lower point in said one or more cone assemblies and gather portions of said slurry mixture; and

said tank assembly is configured to selectively channel said slurry mixture into said one or more draw tubes by opening a gap between said one or more draw tubes and said one or more cone flanges.

18

2. A tank assembly, wherein:

said tank assembly comprises a one or more blister assemblies, a shell assembly, a one or more air inlet hoses, a one or more spray equipment and a slurry mixture;

said one or more blister assemblies comprises a first blister assembly and a second blister assembly;

said one or more blister assemblies comprise a one or more draw tubes, a one or more cone flanges, a one or more head assemblies, a one or more shells, a one or more cone assemblies, an air line assembly, a one or more snorkel assemblies, and a separation distance; and

said one or more draw tubes comprise a first draw tube and a second draw tube.

3. The tank assembly from claim 2, wherein:

said one or more draw tubes selectively mate with said one or more cone flanges.

4. The tank assembly from claim **2**, wherein:

said one or more cone flanges are attached at a lower point in said one or more cone assemblies and gather portions of said slurry mixture; and

said tank assembly is configured to selectively channel said slurry mixture into said one or more draw tubes by opening a gap between said one or more draw tubes and said one or more cone flanges.

5. The tank assembly from claim 2, wherein:

said separation distance between said one or more draw tubes is configured to allow said one or more spray equipment to rotate freely on said one or more draw tubes without interfering with one another.

* * * * *